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A TECHNIQUE TO DETERMINE THE STRESS
DISTRIBUTION IN ROTATING ELEMENTS

ABSTRACT

A method for measuring in-plane displacement of a rotating
structure by using two laser speckle photographs is described.
From the displacement measurements one can calculate strains and
stresses due to a centrifugal load.

This technique involves making separate speckle photographs
of a test model. One photograph is made with the model loaded
(model is rotating); the second photograph is made with no load on
the model (model is stationary). A sandwich is constructed from
the two speckle photographs and data are recovered in a manner
similar to that used with conventional speckle photograpny. The
basic theory, experimental procedures of this method and data

analysis of a simple rotating specimen are described in the text.
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I. INTRODUCTION

Analysis of the stress and vibration characteristics of
rotating turbine engine components under operating conditions is a
continuing | ~oblem in the testing and development of today's air-
plane power plants. J. M. Allen and L. B. Erickson [!] have analyzed
a free standing gas turbine blade by using the NASTRAN finite
element code. Correct modeling of the service loads on the structure
is a major difficulty in such analyses. Other investigators have
used conventional strain gages to experimentally analyze such
structures. Strain gage data is usually delivered through slip
rings, or via radio telemetry, to recording equipment. Problems
associated with getting these signals to the recorder often plague
such tests [2].

J. P. Sikora and F. T. Menden.:'.1, Jr. observed and analyzed
vibration-mode patterns of a rotating propeller by means of an
axially symmetric spinning-hologram technique in 1974 [3]. K. A.
Stetson also investigated the vibration problem of rotating objects
by using ar image derotator with a hologram interferometry technique
in 1977 [2], [4]. Although holographic interferometry is well
suited to measurement of normal to the surface movement, the
separation of the in-plane displacements (from the out-of-plane) is
more complex. Since the meas:rement of in-plane displacements is
usually necessary for strain computation, a simple coherent method,

1
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possessing the advantages of holographic interferometry (high
sensitivity and large field converge of complex shapes) but
suitable for direct in-plane displacement measurement would be
desirable.

Laser speckle photography has emerged in recent years as a
proficient technique for measuring small in-plane displacements
[5], [6]. This article develops a so called "Sandwich Speckle
Photography" technique for determining the stress of rotating
elements. The approach is to take a speckle picture of the
rotating element with a Q-switched, ruby laser. Next the element
is stopped in approximately the same position as when the dynamic
speckle picture was taken and with a new film plate a second
speckle picture is taken. The photographs are then mechanically
superimposed, emulsion against emulsion, and carefully aligned to
produce Young's fringes. This approach supposes that the speckle
surface will produce the same speckle pattern when illuminated
with a pulse laser at different times except €or the displaced
position due to the element rotation. The incentive to develop this
technique was motivated by the work of Nils Abramson, who developed
a "Sandwich Holography" technique in 1974 [7]. B. E. Maddux and
F. D. Adams developed a Dual-plate technique for static speckle
photography in 1976 [8].

In Chapter II, the basic theory of sandwich speckle photography
is introduced and a mathematical model is developed to explain the

fringe pattern one observes in the diffraction halo of a sandwich
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specklegram. The experimental setup and procedures are described
in Chapter III. Stress analysis of a simple rotating model by

using this method is presented as an example.



IT. BASIC THEORY AND MATHEMATICAL MODEL
OF SANDWICH SPECKLEGRAM

When an ojbect is illuminated with a laser a speckle pattern
is produced. If the speckle is photographed and then the model
loaded and the resulting speckle pattern superimposed on the first
photograph, the double exposed photograph contains information about
the displacement of the model under load. This information can be
seen by shining a laser beam through a small area of the negative
and observing an interference pattern on a screen. The above
statements are the description of a conventional double exposure
specklegram [9]. In most of the applications of double exposure
speckle photography, the specimen will undergo rigid body movement
in addition to deformation between exposures. In order to cancel
the effect of rigid body in-plane movement of the specimen, the
film holder must be translated and/or rotated between expo-ures by
a corresponding amount. In most instances the rigid body movement
is not known in advance of the loading.

A sandwich specklegram offers the user a method of canceling
rigid body movement without a prior knowledge of it. Instead of
employing a double exposure technique, two separate speckle phcto-
graphs are made. The film plates are then sandwiched together and

data recovery is accomplished as with a conventional specklegram.
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In-plane rigid body translations or rotations are canceled by

moving one film piate with respect t. the other.

The following procedure is employed to record a sandwich
specklegram. A glass film plate (typically NAH Agfa 10E75) is
sandwiched with a clear plate of glass (same size and same thick-
ness as the film plate) placing the emulsion side towards ihe
center of the sandwich. A speckle photograph is made of t' 2 in-
dispiaced object with the emulsion side of the film plate faced
away from the surface of the object (the film plate is on the
lens side of the sandwich). Then, a second speckle photograph is
made of the displaced object using A new film plate, with an
identical sandwich procedure except that the sandwich is turned
around so that the emulsion side of the fiim plate is towards the
surface of the object (a clear glass plate is on the lens side of
the sandwich). Both film plates are then chemically processed and
thoroughly dried. A sandwich specklegram is constructed by placing
the two speckle photographs emulsion to emulsion such that ihe
images are geometrically matched. A description of the mechanical
positioner to accomplish this task is provided in Chapter III.

With a conventional double erposure specklegram, in-plane
displacements result in speckle pairs contained in a plane per-
pendicular to the optical axis of the camera. This geometry is not
completely simulated by the sandwicn specklegram technique, Film
emulsions are not infinitely thin and glass film plates vary in
thickness. As a resu’t. each speckle of a pair will be reccrded

either forward or behind its' partner. This is true even when the
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recordings are made such that the sandwichs are put together
emulsion to emulsion. Therefore, data recovery from a sandwich
specklegram is complicated ty the longitudinal displacement of
paired speckles due to separate emulsions, A modification of the
Young's equation derived for ~onventional double exposure specklegrams
{9] is required in order to explain :-: frinje pattern of a sand-
wich specklegram and acquire displacement data.

Consider a point, P;, contained in an aperture and iiluminated
by 1ight source S as shown in Figure 1. The light wave scattered
by P; to a point 0 on a distant screen may be represented by the
real part of

Ey = A Exp [io;] (1)
where A i: the amplitude and ¢, isa phase angle.

L2t a coerdinate system XYZ originate at this point. Censider
a second nearby point P, located by separation vector B and of
coordinates x, y, z. In Figqure 1, the optical path
length of the light feom 5 to Py to O is denoted by L, and is the
distance

Ly = [PyS] + [P0 (2)
Equation (2) can be written in the following form

Ly = (PS5 P5)%+ (F0- P70)° (3)
The optical path length of the light from S to P, to 0 is denoted
by L, and is the distanc

Ly = [P;S] + {P,0] (4)
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Diffraction by Two Points
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This equaticon can be written as
Ly = (P« F5)% + (PO - Fp0)* (5)
The change of phase is

2o = 2T (1, - 1y) (6)

where A is the wave length of the 1ight source.

Note that
PS-FS-8 ™

and

P,0=P0-8 (8)
Equations (4) through (8) when combined, yield

so = B (PSP (PO - PO - (PS - PS)*

- (F0- P04 (9)
so = B (PSP - 2755 +5-8)

+ (P0-P0-2P0-8+8-8)*

- (P35 -P3)% - (P70 - P10)7 (10)

Because the displacement vector B is very small, relative to PO and
PS the terms B + B in equation (10) are neglected as higher order

terms. Then from applying the binomial expansion

(F3-F5 - 273 -0 = (3P0 - BBl (1)
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S T p— (P10 - B)
P0-P10-2P;08)*= (P;0°P;0)° - (12)
(P10 - Py 10 - B)* = (P10 P,0) 73 P07
Therefore equation (10) becomes
12y PO _
_zem Y . -B (13)
V=3 | Fo- P02 (P 0 -F0)"

The terms in brackets in equation (13) are unit vectors in the
directions P;S and P;0; therefore,the following change in notation

is employed
2

s *TF,5-P5)%

{(14)

- P10
no = '(==Plo -=P10)!§ (]0)

So the phase difference in optical path length traveled from S to
the scattering points and then to 0 is given by

Ad =-:%1 B- (E; + ﬁo) (16)

Let the direction cosines of ﬁb be 1, m, n, then

n = -k (17)

n, =17 +mj + nk (

-
o
N

The 1ight wave at O from the second point, P,, will then be
E, = AExp [i (4; +29)] (19)

Consider a small aperature centered in the X - Y plane. For each

scattering point in the aperature B = xi + yj light reaching point
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0 from each point in the aperature will be represented by
E=RExp [i(ey + 14;)] (20)

where from equation (16)

84)= '—il (1x + my) (21)

The total contribution ut 0 from all points in the aperture is

obtained by integrating over the aperture

U, = AExp [igy] f[ Exp [ia¢,] dxdy (22)
JJarea

Consider a second aperture identical to the first but uniformly
displaced along X, Y and Z by Ax, 2y and Az respectively. Ax, Ay
and Az are assumed sufficiently small so that equation (16) is valid.

For each scattering pointin the first aperture (at coordinates
X, Y¥), there corresponds an identical pointin the second averture 't
coordinates x+Ax, y*Ay and 1z) emitting a light wave t. ncint O.

Each of these waves at 0 may be represented by
E=AExp [i(s; +1¢2)] (23)
where with equation (16)

B = (xtax) 7 + (yray) 7 +3zk (24)

thus 1o, = =21 [1(x+Ax) + m(y +ay) + (n-1r 2] (25)
27

The total light distribution at 0 from points in the second aperture
is
_ o
Uz = R Exp [is,]i) Exp [ias,)dxdy (26)
--area
Comparing U, with U, we find that (Note: Ax, iy and 1z are

constants)
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T, = T Exp [-i 22 (laxsmy+(n-102)] (27)
The total wave distribution at 0 from both apertures is

Up = Uy + U, =T {lﬁxp[-iz—;(hxﬂmy-l-(n-l)az)]} (28)

The intensity observed at point 0 is then

I, =€ U - T (29)

where U} is the complex conjugate of U} and

[
fon
L]

a proportionality constant.

If

[ o=t
I

T UI[I«‘Exp (‘ia)]
Then

— %
T ° U; [1+Exp (is8)]

[ o=
)

[emed
*
/]

-— 1
T Up Uy - Uy [1+Exp (-i3) + Exp (is) + 1]

I
o [2+2 coss]
1

21,
I [1+cos?] (30)
1

where

%*

Cl Ul ‘UI

So rrom equation {28), (29) and (30) we obtain

I = 1I; [1+cos & (Wxsmy+(n-142)] (31)
[; is the iatensity due to a single aperture. This intensity is
modulated by the bracketed term. I; typically represents a halo

ind the bracketed term represents "Young's fringes" across the halo.
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Let the X-axisbte along the in-plane separation direction of
the two apertures (then Ay=0). Az represents the "gap" between
film plates when using the sandwich method. Within the halo the

observed intensity is then

10c[1+cosZE (lax+(n-1h2)] (32)
Fringes occur when
Bx + (n-1az= P N=+1, 3, 5,--- (33)

Three conditions resulting from equation (33) are considered.
First, ifaz=0 orax>xz, then equation (33) reduces to

1ax = 4 N=+ 1, 3, 5,--- (34)

which represents the conventional double exposure specklegram
equation. 1 is usually approximated as é where X is the axis
perpendicular to Young's fringes in the diffraction halo, R is the
distance from the specklegram to the screen. Second, if Ax=0 then

equation (33) becomes

=

(n-1)az = 3 N= +1, 3, 5--- (35)

Cre can see from equation (35) that the fringe pattern of the
second condition is a set of concentric circles. The spacing
between these cricles is inversely proportional to az. Third,
ifAx and Az are of nearly equal magnitude, the fringe pattern
for this condition is curved. The curvature of the fringe pattern
is caused bv the [(n-1)az] term.

Data recovery of a sandwich specklegram can be discussed.
If the curvature of the fringe pattern is very small, then one can

get the in-nlane displacement, i x, from equation (34). If the
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curvature of the fringe pattern is large, 4x can be evaluated by
the following procedure. Translate or rotate one speckle photo-
graph with respect to the other until the fringe pattern becomes
a set of concentric circles, the longitudinal displacement Az can
be acquired from equation (35). Then from equation (33) one can

calculate Ax as

ax=1 - (-1 a2l N=21,3, 5, (36)
where
ne—R_
REF X

The direction cosine of the vector from P;to any observation
point on the screen in the X-direction is 1. The sign of 1 can be
determined from the diffraction halo finge pattern. If the obser-
vation points are on the upper half part of the screen, the relative
values of 1 are positive; if the observation points are on the lower
half part of the screen, the relative values of 1 are negative. If
Az = 0, the fringe pattern is a set of straight lines. From equation
(34), one knows that for positive values of A x, the fringe numbers of
the fringes on the upper half of the screen are positive values; and
the fringe numbers of the fringes on the lower half of the screen
are negative values. Ifa x= 0, the fringe pattern is a set of
concentric circles. From equation (35), one knows that for positive
value of Az, the values of the N's are negative; therefore, ifix
and Az are positive values, the fringe pattern of the sum of the
above two fringe patterns is similar to those illustrated in Figure

2A. Similarly, if 3x is a negative value andAz is a positive value,
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Figure 2

Two Theoretical Fringe Patterns
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Figure 2B represents the fringe pattern on the screen. If the front
plate in the sandwich specklegram is a recording of the undisplaced
object Az will be positive and the relative displacements caused by
the image recorded on the screen are in a direction pointing toward

the center of curvature.



II1. EXPERIMENTAL SETUP AND PROCEDURE

Introduction

A moving blade was driven by a motor with a rotational speed
over 3000 rpm. This model was comprised of a thick disk with two
bars attached on the per{phery of the disk. The experiment has
three main steps. First, a speckle photograph was taken and
developed of one of the bars of the model while the motor was
rotating. Let this picture be called the "dynamic picture.”
Second, with the motor stopped, another speckle photograph of the
same bar was taken, at the same position as that taken in the
dynamic picture. This picture is called the "static picture."
Third, these two film plates were sandwiched by a positioner and
illuminated with a laser; then information pertaining to displace-

ments and strains in the bar due to acceleration load was obtained.

Model

The model, a thick disk with two bars threaded into its
periphery, was made of steel. The diameter of the disk was 3.50
inches, and the thickness of the disk was 1 inch. The central
part of each bar was 3.25 inches long by .50 inches wide by .125
inches thick. Both ends of each bar were cylindrical in shape and

threaded with a .50 inch thick diameter and 1.25 inches in length.

16
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The end of each bar was threaded into the periphery of the disk
with a 3.25<inch by .50 inch plane parallel to the surface of
the disk. The two bars were 180 degrees apart on the disk. A
threaded weight (87.52 grams) was attached to the free end of
each bar to increase the dynamic load and to balance the
assembly. This model assembly was axially attached to a .75-
horsepower, 3540 rpm motor. Figures 3A and 3B show the support-
ing frame, motor and model. The rubber pads under the support-

ing frame, motor and model were to absorb vibrations.

Dynamics

The basic equipment for taking pictures (reference Figure 4)
consisted of a Q-switched pulsed ruby laser [10], one Spectra-
Physics, Inc. model 164 Argon Ion Laser with model 265 Exciter,
two Textronix 549 storage oscilloscopes, one 0-7500 volts DC
power supply. One pockel cell power supply, one Spectra-Physics
5 milliwatts Helium-Neon laser, and two photodiode detectors.

With the motor rotating, one of the bars would intersect
the argon laser light path, so that oscilloscope I was triggered by
photodetector I. After oscilloscope I was triggered, t, msec
later it triggered oscilloscope II. After oscilloscope II was
triggered, t, msec later it triggered the pulse generator; then
the ruby laser fired. The angle between the position of the bar
intersecting the argon laser light path and the position of the

bar illuminated by the ruby laser light was about 180 degrees.
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So if the sum of t, and t, was very close to the value of the
half period of the motor, one could get a dynamic speckle photo-
graph with the bar in the proper position.

The following were the procedures for setting up the equipment:

1. The ruby laser was aligned [10].

2. A black paper target was put about 2 feet in front of ‘.e
ruby lase-, and the laser fired in its random mode [10]; the laser
left a white spot on the black paper.

3. A five milliwatts He-Ne laser and two mirrors were placed
0.. the top of the ruby laser as shown in Figure 5. The light beam
which came from the He-Ne laser was parallel to the light beam
which came from the ruby laser. The two mirrors were adjusted so
that the He-Ne laser beam hit the white spot on the black paper.
This aligned the path of the He-Ne laser with the ruby laser. The
ruby laser is a pulse laser, so it was very difficult to use the
ruby laser to heip one set up the otner equipment. But the He-Ne
laser beam is a continuous beam, therefore one could use the
He-Ne laser to help set up the other equipment.

4. The black paper was removed. The motor, model, rubber
pads, and supporting Trames were mounted in front of the ruby
laser on the floating table. One of the model's bars was
rotated to the position so that the He-Ne laser beam hit the

central part of the bar.
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5. A ground glass was ioaded in the film plate holder with
the ground side of the glass away from the model. A flashlight
was used to illuminate the model bar for positioning the con-
vergent lens and film holder.

6. A divergent lens was positioned so that the He-Ne
laser light illuminated the whole bar or the part of the bar that
was to be photographed.

7. With the He-Ne laser off, the ruby laser was fired.

The divergent light that came from the ruby laser was compared
with the divergent Tight that came from the He-Ne laser. When
the same area of the model bar was illuminated, the divergent
lens was correctly aligned.

8. The He-Ne laser was turned on again. The image of
the bar was observed by looking through the back of the ground
glass toward the convergent lens. A piece of tape was placed
7 each side of the bar image as seen on the ground glass so
that the image was uxactly between these two pieces of tape.
This helps one decide the delay times of the oscilloscopes
for taking a dynamic picture.

9. The mirrors were adjusted so that the argon laser licht
(green continuous light) hit on the central part of the other
bar of the model. The He-Ne laser was turned off.

10. Photodetector 1 was in the posit%on where the argon
laser light could hit directly after the model bar was rotated

away.
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The trigger input cate of oscilloscope I was connected to .he photo-
detector I. A+ gate of oscilloscope I was connected to the trigger
input gate of oscilloscipe II. B+ gate of oscilloscipe II was
connected to the ruby laser power suppiy. ' gate of oscilloscope
II was connected to a pulse generator. Further information regard-
ing equipment settings is shown in the Appendix A. Photodetector

I sent a pulse to trigger oscilloscope I, after t, msec delay.

A+ gate of oscilloscope I triggered oscilloscope 'I; after a t,

msec delay, oscilloscipe II sent a pulse from A+ gate to trigger
the pulse generator and caused the ruby laser to lase. The ruby
laser included the flash lamp power supply, pockel cell power
supply, and photodetect~+ II. The pockel cell was used to inhibit
lasing until the laser pulse was desired. Photodetector Il was
connected to the input gate of oscilloscope II, so the output of
the ruby laser could be monitored.

11. The only remaining problem was how to dete:mine the values
of time periods t, and t,. The speed of the motor was 3540 rpm.
so the half period of the motor was 8.47 msec. If one random lases
the ruby laser, from the output mode shown on the screen of
oscilloscope II, one knowsthat lasing took place only between .8
msec and 1.6 msec after the ruby laser's flash lamp initiation.
Therefore, ¢ was set to equal 7.47 msec and t2 was set to equal

1
1.0 msec as a first attempt. The steps used in taking
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a dynamic picture (the steps are discussed later) were then follow-
ed using a ground glass instead of the regular film plate. When
lasing took place, looking through the back of the ground glass
toward the convergent lens,if the bar image was cbserved between the
two pieces of tane on the ground glass, the oscilloscopes' time
dalays were correct. If the image didn't ccme exactly between the
tapes, the time delay of oscilloscope I was adjus<:i and the

above procedures were repeated again, until the image was exactly

between the tapes.

12. The ground glass was removed from the film plate holder.
The following were the procedures for taking the dynamic picture:

1. All equipment was checked.

2. The motor was turned on and 3 minutes allowed for the
motor to reach a steady state.

3. The argon laser was turned on; a black target card was
put in front of the argon laser so that the biack card covered the
argon laser light.

4. The oscilloscore II was reset.

5. The light in the rcom was turned off.

6. The film plate was loaded on the film holder with the
emulsion side of the plate away from the convergent lens. The name
and number of the film plate used was Agfa 10E 75 NAH,

7. The pulse generator and pockel cell power supply were
turned on.

8. The ruby laser power supply was turned on and the power

control switch was adjusted so that the output power reached 1.5 kw.
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9. The black card was removed.

10. Reset oscilloscope 1 and the ruby laser should
lase.

11. The argon laser beam was covered again. The pockel cell
power supply, pulse generator, ruby laser power supply and motor
were turned off.

12. The film plate was unloaded from the film holder and it
was protected from the light.

13. The light in the room was turned on.

14. Jne went to the dark room and the film plate was developed.

Static Picture

The film holder is shown in Figure 6A and 63. There were
two small pins fixed on the lower edge of the "window" and one
small pin fixed on the left-hand side of the "window." There were
three small screws that protruded from the back of the film holder.
The lengths of these screws were all the same. When the film plate
was loaded into the film holder, the face of the film plate
should tightly rest against the three tips of the small screws
and the two sides of the film plate should tightly rest against
the three small pins on the edges of the "window." This pro-
cedure insured that the film could be loaded in the same

position each time.
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Film Holder (Back View)
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After the negative of the dynamic picture was developed, the
negative was loaded back into the film holder as noted above.
A light (flashiight) was used to illuminate the model bar and
its image was viewed through the negative. The bar was slightly
rotated until the projected image and the negative image coincided.
The negative was removed, and a clean glass plate with the same
thickness as that of the negative was loaded into the film holder.
With the room light off, a new film plate was loaded into the film
holder with the emulsion side resting against the clean glass plats,
(the clean glass plate was between the convergent lens and the film
plate). The ruby laser was fired. The film plate was removed and
developed. The two speckle photographs (dynamic and static),
were placed emulsion to emulsion in the positioner (the positioner
will be discussed in the next section) and illuminated by the
argon laser light. If a set of fringes was readily observed on
the screen, then the data collection was successful. If the data
was not observed, the model bar was not at the correct position.
By trial and error, one rotated the model bar to the right or to
the Teft .004 or .005 inch, and took another static speckle
photograph and again observed the resulting data, until a set of

fringes was observed.
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Positioner
The positioner was a device for sandwiching the dynamic and
static speckle photographs. A photograph of the positioner is

shown in Figure 7. This device had two main parts: a main frame
and a translation stage. Figure 8 is a photograph of the main
frame, and Figures 9A and 9B are the photographs of the trans-
lation stage. The three screws on the main frame could fix the
position of the translation stage so that the translation stage
rotates without translation along the screws. Two small
spring clips control the vertical and horizontal movements of
the four by five-inch box inside the translation stage. The

static and the dynamic speckle photographs were sandwiched together,

emulsion to emulsion, such that the images were almost geomet-
rically matched. This sandwich of negatives was then placed in
the positioner such that one negative was on the window of the
main frame and the other was below the box window of the trans-
lation stage. The positioner was made of steel. The weight of
the translation stage made the two negatives press each other
tightly. The three screws were set at the correct positions so
that the translation stage was fixed. The translation stage was
rotated by moving the handle and translated by turning the spring
clips until the two images were precisely matched. Displacement
data was observed by passing a narrow laser beam through the
photographic images. The laser and positioner setup for data

recovery is shown in Figure 10.
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Figure 7

Positioner
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IV. EXPERIMENTAL RESULTS

By means of the method discussed in the last chapter,
displacements can be evaluated and strain information calculated
for the moving bars. Several of the fringe patterns from the
collected data are shown in Figure 11. From the pictures of
Figure 11, the fringes are obviously a set of straight lines. This
suggest that the weight of the positioner was sufficient to keep
contact between the two negative emulsions, which is to say that
Az almost equals zero.

If a Cartesian coordinate is defined on tne beam (Figure 11)
the original point is a specific point of the model bar, the X-axis
is along the center line of tne beam being positive away from the
center of the disk, and the positive Y-axis is tangent to the disk.
The coordinates (in inches) of three points on the bar used as
example points are Point 1-(2.125, .J), Point 2-(2.417, .0) and

Point 3-(2.75, .0). The magnification factor cf the negative
was 1.5, so the coordinates of the three points on the negative are

Point 1-(3.1875, .0), Point 2-{3.625, .0) and Point 3-(4.125, .0I.

To calculate strain at a point, say (x, .0), the following
proceduras were executed. First, the fringe patterns of two
neighborhood points on the negative: Point A (x+.0625, .0) and Point
B (x-.0625, .0) were observed at each example point 1, 2, and 3.
Next, Ax for these two neighborhood points was calculated according

36
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to equation (34) in Chapter Two (where ) = 5145x10°8

-8

cm = 2625.59
x10" " inch). Strain at the particular example pointwas calculated
by means of the difference between the Ax's of Points A and 8
divided by .125 inch.

Calculations for the information shown in Table 1 were made
using this procedure. The calculations of theoretical results are
shown in Appendix B.

It should be noted that the ax's of Point A and Point B in
Table 1 are not the exact displacements of Point A and Point B but
are the sum of the exact displacement and the miss-matched movement
between two negatives. For each set of data, the miss-matched
movement of - point is the same. The experimental displacements
get larger w.a  _.1e observation points are closer tu the free end
of the bar. The . 's of set 1 get larger as the cbservation points
are moved toward the free end of the bar. For each point.Ax is
greater than the experimental displacement; thus, the miss-matched
movement is a positive value. Theix's of set 2 and set 3 get
smaller as the observation points approach the free end of the bar,
and one knows miss-matched movement is a negative value. Because of
this mismatch the experimental displacements are not the same as
the theoretical displacements; but the experimental strains which
are the slopes of the displacement curves should match the theoret-
ical strains.

With a relatively small distance R, one can see from Table 1

that the difference of fringe spacing between any two adjacent points



Table 1

The Theoretical and Experimental Displacement and Strain Data

Ax of Ax of

Fringe Fringe -Eiberimenta1 Theoretical Theoretical Error of
Spacing  Spacing Pt.A, Pt. I Strgln Disp, Strain Strain
of PLt.A of P{.B  x10 in  x10 =in  x10 “in/in  x10 Zin x10 “in/in %
x10 =in  x10 -in .
Set 1 Pt. 1}2.4609 2.5098 1.8314 1.7958 2.8504 0.7273 2.9511 3.41
?2?25- Pt. 2]2.2656 2.3047 1.9893 1.9555 2.6973 0.8395 2.9251 7.79
neh Pt. 3}2.0703 2.1094 2.1769 2.1366 3.2251 0.9676 2.8769 12.10
Set 2 Pt. 1|2.1875  2.1488  2.0603  2.0978  2.9968 0.7273 2.9511 1.55
§2?25- Pt. 2}2.3437 2.3047 1.9230 1.9555 2.6074 0.8395 2,9251 10.86
et Pt. 312.5781 2.5293 1.7481 1.7819 2.6998 0.9676 2.8769 6.16
Sgt 3 Pt. 1]8.5937 h8.4375 2.0595 2:6é)6 3.0510 0.7273 2.9511 3.38
87.375 Pt. 2|8.8281  B.6719  2.0048  2,0409  2.8898 0.9251 2.9251 1.21
e Pt. 3|9.0625  8.9062  1.9529  1.9872  2.7410 _0.9676 2.8769 4.72

e 18 g s g de 8 - A
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is very small, This is because the image on the screen is small so
the difference of fringe spacing is not easily evaluated.

The data of set 3, R = 87.375 inches. The image on the screen
is much larger and the difference in the fringe spacing between any
two adjacent points is more readily and accurately determined.

From Table 1, it can be seen that the experimental strains of set
3 are closer to the theoretical strains. Thus, the distarce from
negative to screenr is an important variable in interpreting the
data.

Stress information can be calculated from strain data and

Hooke's law.



V. Conclusion

The theory and technique for the formation of fringes in a
sandwich specklegram were developed and extended to the determi-
nation of surface stress distribution in any rotating elemert
problem. This technique can cancel rigid body movements of the
test specimen so that one can get the deformation of the rotating
element. The strains are calculated by differentiating displace-
ment data. Experimental results and theoretical results are in
good agreement.

The range of displacement measurement for the conventional

6

speckle photography method is from 200x10” " inches to 20,000 x

1076

inches. When the displacements of the specimen are less than

200x10'6 inches, the conventional speckle photography method is

useless [9]. The disolacement one gets from the sandwich speckle

photography method are the sum of the actual disclacement of the

specimen and the miss-matched movement of the negatives. Therefore

if one uses the sandwich speckle photography method, even though

the displacements of the specimen are less than 200x10'6 inches,

one still can get displacement data and strain can then be calculated.
When one uses the sandwich specklegram method to analyze the

stress distribution in any rotating element problem, two things

should be noted. First, the time delays of the oscilloscopes must

a1
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be very accurate to obtain a dynamic speckle photograph. Second,
the distance from the positioner to the screen should be examined

and optimized for the most accurate analysis of data.
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APPENDIX A
EQUIPMENT SETTINGS

Ruby Laser Bench

aperture: .109" diameter

Ruby Lamp Power Supply

Capacitor voltage: 1.6 kilovolts

Pulse Generator
pulse width: 1.5 microseconds
mode: pulse delay
pulse position: 15 microseconds
output pulse amplitude: maximum
Pockel Cell Power Supply

meter reading: 9.5 microamperes

Oscilloscope I

mode: B intensified by A

delay for A: 7.52 milliseconds
time base A: 5 microseconds/cm
time base B: 1.0 milliseconds/cm
sweep setting: single sweep
coupling B: AC

slope: positive

46



Oscilloscope II 47

mode: B intensified bv A

delay for A: 1.0milliseconds
time base A: 5 microseconds/cm
time base B: .2milliseconds/cm
sweep setting: single sweep
coupling B: AC

slope: positive

input: 2 volts/cm
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APPENDIX 8
THEORETICAL RESULTS

A moving model is driven by a motor with a rotational speed
3540 rpm. The model, a thick disk with two bars threaded iato
its periphery, is made of steel. The radius of the disk is r.
The central part of each bar is L long by b wide by t thick
(referring to Figure 3R, Figure 3B, and Figure 11). Both ends of
each bar are cylindrical in shape and threaded with a b-inch
diameter and Lt in length. One end of each bar is threaded into
the periphery of the disk. The two bars are 180 degrees apart
on the disk. A threaded weight M is attached to the free
end of each bar to increase the dynamic load and to balance
the assembly.

[f the model and the threaded weight are assumed tobe omogeneous
and mass distribution is uniform, then the force acting on the
bar is

w2
Fx#(R+L+%L9 W2 + o'LtMlJ(R+L+%LJW
N £
+bst*(L-X)*po [R+X+3x%(L-X)]u (A1)

Fx = (M +

mo Ly b2) (R+L+3Ly) W2
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+obt(L-X)(ResgL +%X) W (A2)
where
W is the angular velocity of the rotating model
p i1s the density of the model
9 = B ___F
A bt (A3)
where

9% is the normal stress of the bar

A is the cross section area of the bar

According to Hooke's Law one can get the strain and displace-

ment by

T (Ad)

U = < dx (A5)
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ABSTRACT

Laser specklie interfercmetry is used as an experimental
technique to measure in.plane surface displacement components of a
deformed solid. A general theory of laser speckle interferometry
which includes both the contributions of in-plane and out of plane
deformations is developed and verified through several experimental
examples. The basic information consists of a couble exposure
phozographic record of a sheared wavefront of the image of the
surface points of a body in a reference and deformed configurations.

Pata analysis in speckle interferometry yields a map of the
surface displacement components along a specified closed contour
for the region of interest. The experimental displacement values
are then used as input data to numericaliy calculate, with a
high degree of resolution, the state of stress at any desired
interior point using the boundary-integral equation methed. This
method is based on the use of an integral constraint equation
which relates boundary displacements and corresponding boundary
tractions in a well-posed boundary value problem.

Several examples are presunted to iilustrate the applicaticn
of the coupled laser speckle interferometry and boundary-integral
sclution technique to two-dimensional elasticity oroblems. This
coupled technique between laser speckle interfercmetry and the
numerical boundary-integral equation method proved %o be an
accurate and efficient procedure for seiving significant engineering

problems.
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I. INTRODUCTION

Recent advances in the area of experimental stress analysis
utilizing coherent optics have been through the develepment of holo-
graphic and laser speckle interferometry. These op.ica} technigues
have been applied successfully to the measurement of the surface
displacements of deformable solids[1,2,3,4,5,6]*. While holographic
and speckle interferometry measure surface displacements, speckle
shearing interferometry determines cdirectly the derivatives of
surface displacemer. 5 [7,8].

Original applications in holograpny suggested that the modern
techniques in using the laser '-ould possibly change the method of
measurement of strains. However, this has not been the case,
although many important engineeriqg examples have been demonstrated.
Difficulties exist in holography because of the sensitivity of the
measurements which require vibration isolation and the ability to
secarate displacement components from a single hologram. Intro-
duction of the laser speckle effect has provided for a technique of
surface displacement measurements without the need of vibration
isolation. In additicn, this technigue is a direct measure of in-
plane dicplacement components, thus the separation of components is
accomplished easily. A1l coherent optica! methods are a measure of

surface displacement or its derivatives on the boundary of a solid,

* Numbers in brackets refer to the iist of references.



thus the need still exists to calculate strain ard stress

components at any location from the surface disglacament data.
The boundary-integral equation (BIE) method is well

suited to the anmalysis of laser speckle surface displacement

data. This method derives its foundations from the application

of ciassical potential theory [9], and was used to provide

numerical solution for the two dim “onal Laplace equation

by Jaswon [10] and Symm [11]. The numerical BIE method has been
applied to two-aimensional problems of elasticity by Rizzo [12] and
subsequently extended to three-dimensional problems by Cruse [13,
14,15]. In addition, boundary-integral methods have been used
successfully to solve problems in elastodynamics [16,17], elastic
inclusions [18], elastoplasticity [19,20], fracture mechanics
[21,22], thermoelasticity [22], anisotropic elasticity [24], time-
dependent inelastic deformation [25], axisymmetric problems [26],
and plate [27] and shell problems [28]. Aiso, the possibility of
coupling the 3IE method with the finite element method has been
snown [29].

Basically, the BIE method for elasticity combines a reciprocal
work theorem and a suitahle singular soltuion to the governing
dif“erential equation to construct a boundary formula which is a
relation between boundary displicements and corresponding boundary
tractions i~ a well-posed procol-- Since either of tuese boundary
quantities, in principle, deteriines the other, the formula provides
a constraint between them which generates a :3t of simultanecus

integral equations from suitable boundary data. The unkncwns in



the equations are boundary tractions or displacemerts directly.
An outstanding conceptual advantage of the bcundary formula
approach is that it applies to three-dimensions as well as two
with similarly defined integral equations arising in each case.
The key feature of the boundary integral equation is that it
couples boundary data for the given problem. As a resuylt, the
problem size is reduced by one dimension (with a corresponding
decrease in computer core requirements). Furthermore, since the
numerical discretization is performed at the boundary and not
throughout the interior, a high resolution for the interior solu-
tion may be obtained at any desired location. This is particularly
crucial for analysis of problems with significant stress gradients.
In principle, the optically measured surface displacements
become input data needed for the BIE to calculate the unknown
tractions at specified points on the boundary. In regions of
high stress gradients or where loading is unkrown, a closed
contour (two-dimensional problems) may be defined around the region
of interest and the displacement compor.ants are then measured
experimentally at specified nodal points on that contour. Stresses
at ary interior point in that region may be obtained accurately
by comparatively simple quadrature once all the contour tractions
and displacemenis are determined.
The coupling of these two soiution technigues becomes more
compatible wher. the displacement data can be stored in the computer
directly without the need of time consuming data analysis. Auto-

matad data analysis systems have been developed [5] for use in



laser speckle interfercmetry which will record and store in memory
in a computer the displacement components around a specified closed
contour.

The subject of this dissertation is the extension of the use
of the numerical boundary integral technique for elasticity problems
through the coupling of iaser speckle interferometry measurements.
A general theory of laser speckle interferométry which includes
both the contributions of in.plane and out of plane deformations is
developed and discussed in Chapter [I. The mathematical formulation
of the BIE method for elastostatics and the numerical solution
for plane problems are discussed in Chapter III. A computer aided
data reduction system is also discussed, and several example
problems are presentad to illustrate the coupling of the two

solution techniques.



II. GENERAL SHEARING SPECKLE INTERFEROMETRY

2.1 Introduction

When a diffuse surface of a structure is illuminated by coherent
1ight, a grainy speckle effect is imaged by the eye or film plane of
3 camera due to the randam interference of light reflected from the
surface. This phencmenon is known as the speckle effect. Laser
speckle interferometry is a relatively new experimental technigue
which shows pranise of elimination to manv of the vibration prcblems
experienced thus far in holographic interfercmetry. The basic method
utilizes high resolution photographics of a surface which is illumi-
nated with coherent 1ight (laser). The method of recording displace-
ment information is to photograph : Jrface in both a reference and
deformed cqnfigurations which resuits in a permanently stored whole
field record through interference fringes of a deformed surface.
Boundary point in.plane displacement measurements are cbtained by
speckle interferometry and derivatives of the boundary displacements
are cbtained throuch shearing interferometry.

Measurements of in plane displacements and the out ¢ ine deriv-
atives are determined by the data analysis of a double exposed photo-
graphic record. Values of displacements and derivatives are determined
through point-wise and full field Fourier fiitering of the fiim. Point-
wise filtering is a method of analysis in which the laser beam is
passed through a point on the film plane. As the beam passes through
the film the deformeg ard undeformed speckles produce a complex di‘-

fraction pattem which causes an interference effect on a viewing



screen, A diffraction halo modulated by iight and dark bars of light
is produced where the distance between the bars is inversely propor-
tional to the distance betweei the undeformed and deformed speckle

on the film plane. A normal to the light and dark bar pattern indi-
cates the direction of displacement of the speckle. Displacements
are thus obtained at a point and each point on the film is analyzed.
Whole field Fourier filtering is used to cbtain the derivatives. In
this form of data analysis, an interference fringe is the locus of
points cf constant values of the derivative. Thus, in general, a
photographic record of a double exposed laser speckle interferogram
contains both displacement and derivative information. Each method of
data analysis will be discussed and illystrated by an engineering
example. Also, the results imply the utilization of a computer based
data analysis system which will also be discussed in Chapter 1V.

2.2 General Theory of Frince Formation

This section presents the general theory of shearing spackle
interferanetry. A scheratic diagram of the experimental apparatus for
shearing speckle interferometry is shown in Figure 2-1. The optical
wedge in the system shifts the focused image in the direction of the
shear. Thus, a point p is imaged at (x,y) and (x+&x,y+éy) in the fiim
piane, and a neighboring point Py is also imaged at (x,y) in the fiim
plane. In order to obtain fringe data, a double exposure technique
is used, where a photograph is taken of the body in some reference
configuration. After deformation, ancther exposure is recorded on the
same {1m.

With th=» body in the reference configuration, the light
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amplitudes at the film plane for both points p and Py can be described
in the following manrer

Ep = Ep(x,y) exa[iep(x,y)}

(2-1)

Ep1 = Spl(x,y) exn{iapl(X.y)]

where a (x,y) is the amplitude modulus and & (x,y) is the phase and
both are, in general, functions of the coordinates of the film plane.
The total intensity for the first exposure can be written as
* *
+ . +
= r B (B v B )

d*

o denote the complex ceonjugate of the light amplitudes,
1

where E; and £

or

L2 2 ]
I ap\X.y) + apl(x.y) + Zap(X.y) apl(X.y) cos e(x,y) (2-2)

where

e(x,y) = ep(X.y) - epl(x.y)

If the tody is deformed and the points p and p, are displaced to
points p' and pi, then the image of poir: 5 on the film piane will be

shifted to new coordinates x' and y'. The light amplitudes in the de-
formed configuration can be written in the follawing form

Ep. = ap(x ') exp[i{ep(x ) o+ Aep}J ooy
-3)

Epé : apz(x ") exp[1{ep2(x ')+ Aepz}]

Aep and Aap account for the phase change in each field due to motien
2

of the object relative to the illumination field. The total intensity

for the second exposure is

1+ (B B ) (5 + B



or

2t y")

= a (gt u!
Iz. a, (x',y') + apz

+ 2 ap(x'.y') 3, (x',y')cos[¥(x',y') + ae] (2-4)
2
where

W(x‘,y') = ep(X'sy.) - apz(xl’yl)
and

Ae= Aﬂp - Aepz

So the total intensity expression for both exposures is

{x,y)cos®(x,y)

] .2 2
ITOTAL = Il + IZ ap(X..Y) + apl(x,.Y) + 2 a (Xa.Y)ap1

p
+ ap'(x',y‘) + api(X',y')
+2 ap(x'.y') a_ (x',y') cos[v(x',y') + ae] (2-5)
P2

Let the displacement vector pp' be written in the following

manner (see Figure 2-2).
L d V- U - - ->» + ->
pp = p - upex vpey wpez

then the displacement vector in the film plane can be written as

, ’ . - - - . - - M - . ->
[pp' (x y)]FILM z Upf upf e, vpf ey (upex vpey)
where M = magnification of camera, typically M<l and up = Mup,
£
= Mv
Yoe T o

The coordinates at the film plane for the second exposure are x' =
X + Ug and y' =y + Ve Now the expression for the total intensity,

Equation (2-5), can be written in the following form
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toTAL * apz(x.y) + aplz(x.y) + Zap(x.y)apl(xw)cos o (x.y)

2 2
+ +
L (x upf.y+vpf) + apz(x+upf,y+vpf)
+ ]
+ 2ap(x upf,y+vpf)apz(x+upf,y+vpf)cos[ (x+upf,y#vpf)
+Ae] (2-6)

Interference fringes are ctained by taking optically the Fourier
transform of the amplitude transmission function of the transparency.
This can be done by several methods depending on the data analysis.
The amplitude transmission function g{x,y) is linear for the ranges
of interest and can be expressed as

g(x,y) = a+b Iigmp (2-7)

where a and be are constants.
Substituting the expression for Irgra, from Equation (2-6) into Equa-
tion (2-7) an expression for the amplitude transmission function is
obtained as

2

g{x,y) = a+b{a 2(x,,\,/) +a “(x,y) + 2a_(x,y)a. (x,y)cos «(x,y)
P Py P Py

2 2
+ 4 + +
ap (x upf.y vpf) + apz(xmpfd fo)

+Zap(x+u ,y+vpf)ap2(x4-u ,y*vpf)cos[“!(xw S

Pe Pe Pe
+a o]} (2-8)
The procedure ceveloped by [6] is used to express the light
amplitude G(m1 ,uz) in the Fourier transform plane (Figure 2-3) which
is proportional to the Fourier transform of g(x,y) times a quadratic

phase factor, i.e.
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1d(uZ4ad)

6loguy) = exel—mt—5=1  Fla(x.y)] (2-9)

F (g(x,y)] denotes the Fourier transform of the function g(x,y),
rather

F (g(x,y)] = {1 9(x,y) expl-1(u X + w,y)] dxdy

and d is the distance between the transparency and the screen. In
the transform plane, the vectorial spatial-frequency variable is de-

finded as

I=u3 "'w.é H
1 Xg 2 Ys
ey
Y1 7d (2-10)

ky
s

“2* 4
The coordinates in the transform plane are denoted as (xs,ys) and the

“-1stant k = g%, where A is the wavelength of the light.
Substituting g(x,y) from Equation (2-7) into Equation (2-9)

yields

where é(ml,uz) is tne delta function defined as

f] .
é(wl,wz) = 1£ exp[-w(m1x+w2y)] dxdy

12



The delta functicn represents the (idealized) point focus of the
illuminating bean. It contributes tc the amplitude G(wl.wz) only at
the center (u1=m2=0); in practice it is a small area around this
point. Outside this small area the intensity IG(ul,uz)iz in the

transform plane is

) I(m1 ’“’2) = !G(wl.wz)lz s G(wl.mz) G*(ml "“2)
= bz I F[ITOTAL]lz (2-11)

Using the identity
cos(v+ae) = cos v cos A<~ sin ¥ sin a =
in the expression of ITOTAL’ Equation (2-6), the Fourier transform of

ITOTAL can be written as

-l

(2).A, (2)

r = *\ > - i I
F LITOTAL] pp(“i*Ap(-J) {1+ exp [1(«0- Upf)]} + A pl

1
+ Apz(m)*Apz(m) exp(i(u. upf)] + ZAp(w)*Apl(m)*C(w)

+ 20 (3,4 (2),6(3) expli(3. U. )cos ae
Py “'*"p, Ps
- 28, (3).A) (3),8() expli(3. U
pz .

)Isin 3 & (2-12)
Pt

F[ ] indicates the two-dimensional Fourier transform with re-

spect to the variable 2, the capital letters Ap, Ap and Ap are the
1 2

Fourier transforms of the functions ap, ap and ap respectively;
1 2

* denotes the convolution integral /such as)

Ap(;)*Apl(;)*c(;) = F [ap(xo)')apl(xa.Y)COS ?(x.y)]

and
C(a) = Flcos ¥(x,y)]
S(w) = Flsin ¥(x,y)]

13



In writing Equation (2-12), shift theorem has been used (such as)

F la,20chuy ey, )1 = epli(3.0, )1 Fla 2(xp)]
f

Pe™ Pg
anc the convolution theorem to describe the transform of the various
products in Equation (2-6). Also Epf has been assumed to be a slow
varying function of x and y.

Several experimental examples will be discussed to illustrate
the validity and the data analysis of Equation (2-12).

2.3 Experimental Verification of the General Shearing Speckle

Interferometry Equations

The experimental problem chosen to verify the results of the
general theory is the flexure of a rectangular beam by a terminal
end load. Let the beam have the end x = 1 fixed and the end x = 0
have a distribution of forces statically equivalent to a single force
wy directed along the negative y-axis as shown in Figure 2-4. Take

the x-axis along the center line of the beam, and y-axis as orthogonal

——

‘ 1=6in, —=

Figure 2-4. Rectangular Plexiglas Bean
with a Transverse End Load
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intersecting at the centroid of the free end. Material fcr tnhe beam

was plexiglas with E = 4.56x105 psi and » = 0.37. The transverse end
load was governed by the displacement of the free end § because of the
constraints on the pointwise filtering of the experimental data. For
cormpleteness of the discussion the theoretical displacement components

from the stress function solution for this problem will be listed here.

2
u= ?_‘5 3Py - Hus2ly® + (B1m) - 3 3y] (2-13)
RSk AT SRS L (210

Exampie 1 - In-plane Displacemer .

The geometrical configuration for in-plane me.s... ents is shown
in Figure 2-5. A point P on the surface of the b:. . is illuminateu-
by a laser lotatad at position S. The surface is imaged by a camera
located at position ) with film plane coordinates parallel tc -te
X,y plane. For this example, the optical wedge is removed, thus, the
lateral shear is zero, which yields, Ap1 = Ap2 = 0 in Equation (2-12).
Furthermore, since only a small area is illuminated in the 7Tilm piane
(see Fgirue 2-€), the displacement in the neighborehood is assured
constant, the total intensity, Equaticn (2-11), reduces to the

following form

I (ugeap) = 268180 (2) , A (D)1 %[1%c0s(S . Gl e

Equation (2-15) agrees with the simple case considered in Reference

(5].



camera

Figure 2-5. Geometrical Configuration For The
First Exnerimental Example

——y
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Only terms that relate to the interference effects in Equatiorn
(2-15) will be considered in the data analysis. Interference fringes
will be defined when I {u,u,) = 0 or [l+cos ;.Epf] = 0. Fringes
are determined by the technique of pointwise filtering as illustrated
in Figure 2-6. For the small region of illumination of the trans-
parency in the neighborhond of P, the displacement is assumed constant
and fringes are formed when

2.0 = (2n-1)7 nel,2,3, ......
Pe

For mos* problems of interest only the first fringe is observed,

therefore,

o=

Pe

@

Displacement components are obtaired from the following expression

rds (xs‘ y5¢ , > -
= (Fe +—=e ) . (ue +v e)=r
X d Xg d ys Pe X pfy
Usually
€ =e,e =8,
X x* Y y
therefore
=Xd (2w
Xg upf * Y vpf > (2-16)

The schematic for determining the components up and vp from
f f
Equation (2-16) is illustrated in Figure 2-7 by measuring the

distances Xg and Yg between the center and points of intersection of

the first fringe with the x and y axes respectively.
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Central
Bright
Spot

Figure 2-7. Schematic for Determining the
In-plane Displacements Components

The displacement camponents for the film plane are then given by
ad

u =
P 2

and

Figure 2-8 is a graph of the results of in-plane measurements for
this experimental example. As can be observed, the experimental
results agree very well with the theory. In addition, this method
of data analysis is amenable t¢ autamated data analysis as wi'l be
described later in Chapter IV.

Example 2 - Shearing Speckie -easurements of
Displacement Derivatives

The experimental arrangement for the example probiem used to
illustrate the shearing speckle measurements is shown in Figure 2-9,

An cptical wedge is placed in front of the camera at 0. /iso for
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this example up = vp = 0 while "‘p # 0 and Ap = Ap1 = Apz = A since
shearing speckle interferametry is a phase phenarenon. Equaticn
(2-12) reduces to
ETOTAL 4 A(u) ACE) + 2A(5),A(),C(S) (1 + cos ae)
- 2 MW)AR),S(2) sin ae (2-17)

Again Equation (2-17) aarees with Reference [5].

Derivative information is related to the minimum of I{w,, u,),
Equation (2-11), which will be minimum - upon substituticn of
Equation (2-17)-when (1 + cos &¢) and sin Ae are both zero. There-

fore, 3® = (2n-1)n will define a fringe. The phase change A< can

2 written in the following form [1]

a® = 2—;’- [Ps + pol . (p;pz' - pP') (2-18)
where ps = 1 and po = 1,| are unit vectors
s Mo
s "o

representing the directions from point P or the object to the light
source and camera respectively. Further, as shown in Reference [3],

Equation (2-18) can be written in the foilowing form

= au 3u 3u
re —R1 (3 8% * 57 &y + 57 22)
3V v
+(ns+m) (-—Ax+3yAy+-?EAZ)
aw W ] )
+(ns+n)(—ax 3yAy+37“_1 (219)

Fringe order can be determined from the following expression
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(n-%—)x -[(154»1 )(%EA yAy+3" az)

+ (m +m)(—Ax+—-Ay+3"

S 3y 3z iz)

+ (n +n ) (— Ax + g; Ay+%bz)] (2-20)

Fringe order data for the shearing speckle is obtained by
taking optically the Fourier transform of the double exposed trans-

parency as shown in Figure 2-3. Data for this example is the

following
10 =m, = 0, fg = 1
and
1S = -sing , m = 0, ng = cos8 where 3=19.59°

For a shear of value ax = 0.0899 in. in the negative x direction
only and assuming that the only non-zero displacement camponent is

w_, then the fringe order n is expressed as

2]
= {-— sins g—g+ (1 + coss) g:] X 4 0.5 (2-21)

where » is the wavelength of the laser light used = 6328 A°.
Comparison of the theoretical and experimental results for the case
of free end cdeflection of 0.005 inches are shown in Figure 2-10.

As in the in-plane example the results are in good agreement.

Both experimental evamples illustrate the combined effects of
displacement measuremer..S in laser speckle interferometry. Also the
measurements are not c¢mstrained to vibration isolation environments
as in holography, therefore, measurements on prototype systems are
possible. Pessibly one of the most important advantages of the

speckle technique is the ability ¢o automate the data analysis by a



10

Fringe Order

~——e Theoretical Curve

O Experimental Points

OL | ] ! | ]

1/6 1/3 172 2/3 6/5 |

Dimensionless Distance (Jiﬁ)

Figure 2-10. Comparison of Theory and Experirent Alona
the x-axis for the Second Experimental Fxample

ve



carputer based system, in particular, the in-plane measurements.

25



26

IIT. THE BOUMDARY-INTEGRAL EOUATION
METHOD FOR ELASTICITY PROBLEMS

3.1 Brief Introduction

The boundary-integral equation (BIE) met! ud, with its origin in
classical elasticity, has only in recent years been developed and
applied to solve significant problems in solid mechanics. The
initial applicétions of the BIE meth~d to solid mechanics prob1eﬁs
have taken place within the past twelve years [12]. Since then the
potential of this powerful technique as a basic tool for solving
engineering prcblems has been recognized and the number of preblem
areas in solid mechanics that have been solved using this numerical
technique is large [30].

The BIE technique is based on the use of an integral con-
straint equation which relates boundary displacements and
corresponding boundary tractions. One advantage of this method is
that numerical discretization occurs only on the boundary of the
body being an.'yzed, which reduces the dimension of the prcblem by
onz. No approximation to the field equations are necessary as all
approximations are made at the boundary, hence a high resolution
for the inte-ior soluticn may be chtained at any desired location.
This is particularly important for the analysis of proliems with
significant stress risers. The BIE method is also independe-~. of
boundary shape and connectivity of the body.

Folloving this section is an extensive review and a thorcugh

discussion of the mathematical formulation of the BIE method as



applied to elastostatics. Formulation of the numerical solution
technique for plane problems is discussed in Section 3.3.

3.2 Mathematical Formulation of the BIE Method

A comprehensive review of the mathematical basis and formula-
tion of the BIE technigque for twe and three dimensional elasticity
is essential for conscious and better understanding of this powerful
technique and will be documented in this thesis for completeness of
the discussion.

This discussion is restricted to the analysis of classical
elastostatic problems for which the matzrial may be taken as
isotropic and homogenous. The notation used is the usual cartesian
tensor notation with implied summation on repeated indices and
partial differentiation denoted by the comma-index.

Equilibrium equations can be written as,

045, t by =0 (1, = 1,2,3) (3-1)
where bi is the body force. The stress compcnents 345 and displace-
ment gradients are related by Hooke's Law

2 _Quv . . -

953 * T2y Sij UYmom T #lY4,5 * Yy, 4 (3-2)

where y is the shear modulus of the material and v is Poisson's
ratio. Substitution of Eouation (3-2) into tquation (3-1) results

in the Navier equations of equilibrium in terms of the displacements

= Y ij+uj1'1'+ulbj'0 (3-3)
The solution of this differential equation must satisfy approoriate
boundary conditions. The displacement bourndary value probiem

assumes knowledge of the displacement on the entire surface S

27
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ug(x) = uy(x) (3-4)

where x denctes the orthogonal cartesian coordinates x;,X,.Xs. The
Di are the prescribed values of surface displacements. The trac-
tion boundary value problem is

ty(x) = og5ns = ty(x) (3-5)

where the vector function Ei(i‘) is prescribed for x& S. The unit
vector nj is the outward nonmaI.vector for the body R.

The surface tractions and disp’acements associated with any
two solutions to the govermning equations of elasticity in a region
R can be related through Betti's theorem of elastic reciprocity [31].
Betti's second theorem states that for continuous, finite stresses
and zero body force

J thilas = f téulds (3-6)

S S
where S is the bounding surface of R.

If body forces are included in the stress field Betti's second

theorem can easily be shown to be of the form

2,14y - (3-7)

1.2 z 1
tiuidS + J X3 uj dv = J -qu3 dS + xi §
S
2
1

for body force fields X1 which are finite and piecewise
continuous in R.
The develcpment of the boundary integ 1. approach proceeds by

2 2

setting cne of the stress states uj and t; in Equation (3-6) 2qual

to the displacements ”i* and tractions ti* corresponding to the



fundamental solution to Navier's equaticns. uilsui and tilst1 are
displacements and tractions for the other stress state. It has
been shown in Reference [32] that the fundamental soluticn to
Navier's equations corresponds to Kelvin's problem. By letting the
distance between the field point q with coordinates yy» ¥, and v,
“and load point p with coordinates x,, x, and x5 be given by

r=[ly; - x) (yy - X,-)ll/2 (3-3)

the well known solution [31] to Kelvin's problem of the pcint load

of unit magnitude in each of the X; directions in an infinite body

is
1 1
* = KX - -
*(p.a) TmlT T ((3-4v) S5+ r,ir,j]ej (3-9)
where ej's are a set of unit vectors in the xj directions. In

Equation (3-9) and in what follows all differentiaticns are with

respect to the field point g, i.e.,

= H— E-3 l - 2 - ﬁ. -
r,i ayi - (y'i Xi) axi (3 10)
—ar = —3 = —1 - [3e
and 3N . n1. r (yi x‘i)ni . {3 11)

i
where the normal is evaluated at ¢ also. The tractions on an
arbitrary surface with outward normal nj around the point p
corresponding to the fundamental solution are given by

* =
- = 1-29) 1 3. 3 )
ty (p.a) =cyyns = - 'él'(_ﬂ 2 iy YT iy

Pre o

—
(9]
1
-
(28]
-

-n. +n.r . le.
A MR I RS



From Equations (3-9) and (3-12) second-order tensors can be

found

*
ug (paa) = Ugslpaa) ey s

* (0.4) (3-13)
=7 . .
ty (Paa) = 7,;5(p.3) ey
whey  [13]
el 1 g
Uji(D,Q) Tml(lv] r L(3 4v) 85 * r,ir’j] (3-14)
_and
. (1-29) 1 MO3r 3
T;4(psq) = - WT-'\)JT .2|3m (85 + 1% r,1r,j)
(3-15)

The first index in Uji(p,q) and Tﬁ(p,q) corresponds to the direc-
tion of the point 1oad and the second index refers to the component
of the respective displacements and tractions.

For the two dimensional isctropic plane strain case the

fundamental tensors are [12]

= 1 1
Uji(p.Q) = Bruliov) [(3-4\:) In = aij + r,ir,j] (3-16)

- - zi%:&z}.l ar 2 )
Ty4(psa) w(1-v) T [;n (835 * =55 " 4",5

=0Ty + nir’j:[l

and
(3-17)

The case of plane stress can be hardled through the use of an

effective Poisson's ratio civen by [v/{1+v)].

Due to the singular nature of Kelvin's probliem at the point

p(x) a small spherical region (circular region for the two-

< -2
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dimensional case) of radius ¢ dencted R= surrounding the point p
with surface S_ has been deleted (see Figure 3-1). A limit will
be taken by diminishing the radius ¢ indefinitely. The external
boundary of the region will be taken to be the surface S of the body.

Fiqure 3-1. Develooment of Somigliana Identity

Now Equation (3-6) as agnlied to the region R-Re can be rewritten as

[0, * 318
Jtiuids = [uitids (3-18)
S+ S+5S
€ €
Noting that on the surface S , 4..4 ; 21so for the deleted
e’ dn dr
region ¢ = r; it is easily verified that the limit
. *
it [ e} as = 0 (3-19)
>0 S
€

The second integral in Equation (3-18) over S8 may be written as
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f uit; ds = [ (‘-‘i(Q) - ui(p)] t:(D.Q)dS(Q)
S, S, ) (3-29)
+uy(e) [ £](p.Qa800)
)
€

where point Q is on the surface S_ and point p(x) is held fixed in
the integration. Since the displacements are continuous at p(x)

the second integral in Eguaticn (3-20) has zero limit as e¢-0. And

tim {uy(p) [ t:dS}

e=0 ;

S S (3-21)

€ €

*
lim I u,t.ds
ero 4 11

u;(p) 838 * uj(p)ej

Substitution of the above results into Equation (3-18) and taking

the limits as e¢»0

* *
[ tou, ds = uj(p)ej + J u;t. ds (3-22)
S )
. . . * *

Making the substitution that u; = Ujiej’ ti = Tjiej and
taking each'of the ej tems as independent the following vector
eauation is obtained

us(p) = j t5(@U;5(p,00a5(Q) - | v (AT, (pu0)ES(Q)  (3-23)

S

———

[ ¥, B

where uj(p) is the displacement vector at an arbitrary intemal
point p, and the vectors "i(o) and ti(Q) are the displacement and
traction vectors at a surface point Q. Equation (3-23) is the well
known Somigliana identity for the interior displacement fizld

generated by a full set of known boundary displacements ang



33

boundary tractions (cf. Reference 31, p. 245).
The interior stress state may be generated by differentiation
of Equation (3-23) with respect to the load point p(x) and using the

constitutive equation, Equation (3-2), and is given by

aij(p) = J tk(Q)Dkfj(p’o)ds(Q) - j uk(o)skij(p ,Q)dS(Q) (3'24)
S S
The third order tensor kermels Dkij and skij are given by [32]

Oigt0:0) = gemrmy G L2005 r g

. (3-25)
T UL LY
-
S (paQ) = s (1) { 88 [(1-2v) ¢, .r
kij'*? fax{i-vs rs d¢n ij ,k
*vlgr g * 85Ty - "',i',j".k:[
+ 3 “(nir,jr,k + njr'ir’k) (3-26)

+ (I-Zv)(Snkr,ir,j + "jSik + nidjk)

- (1-4v)nk51j

In the above two equations a=1,2; 8=2,3; y=4,5 for two and three
dimension problems respectively. The comma-differentiation is to be
taken with respect toc the coordinates of the point of integration,
and since the stresses are found by taking derivatives of Equation
(3-23) with respect to the solution point p(x), a change of sign

(£ =.

z=.2= )  The normal is evaluated at

ri from the i i
arises from the identity 3%, 3,

Q(x).

While Equation (3-23) reprecents the interior soluticn, its use



requires the simultaneous specificaticn of all components of

both the displacement vector and traction vector for all the
boundary points. These six boundary conditions are twice as many as
required by the uniqueness theorem.

The essence of the boundary-integral equation technique is to
allow the internal point p(x) to pass to an arbitrary surface point
P(x), yielding a set of integral equations which can be solved for
th2 unknown boundary tractions and displacements in a well-posed
boundary value problem. It should be noted that the kernels of the
integrals in Equation (3-23) exhibit singularities as p(x)
approaches the surface S, so that the resuliting set of integral
equations will be singular.

The limiting procedure for p(x) approaching a point P(x) on a
smooth contour (two-dimensional case) is illustrated schematically in
Figure 3-2a. This smooth contour permits the construction of a short,
straight line centered at P(x) with length 2:. The internal point
p(x) is placed at the boundary and the boundary is augmented as showr
in Figure 3-2b. Point p(x) is assumed to be at the center of the
circle and afterwards the radius e is reduced to zero. The peint
will then become a boundary point. The results of this limit for

the individual terms of Equation (3-23) are as follows

13 ' = .(P 9=
pz;) N P(§)UJ ) uj ) (3-27)
Tim [us (@754 (p.0es00) =

p(x) ~ P(x)
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n
3 X P(x)

p(x) R

Figure 3-2a

Figure 3-2b

Figure 3-2. Limiting Procedure for p
Aporoaching 3mocth 3Soundary
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3 i 31

1im I uiT.idS + lim u,T..dS
e+ d e=+0

S-S
3 3

For simplicity the second limit on the right hand side will be
called I;

. . dr ar 3r
= T.,d5 = - L= - 42 = =}
I ll% l ui ji 11"6 l u1[dn {1 2“)513 2 3x.i axj"
€ € 3
; r ar 1
+ (1’2\)){3-)(1 nj - Kj n1}] —(—” v ds

knowing that e=r and using a polar system of coordinates for

simplicity,. the second term in the above limit will disappear as,

r r 3r ar ar ar
= N, - NEem = +— = =0
ax; 3xJ. 7y 3 axj 3x,

Since g—: = 1 and dS = rde where the range on 9 is -as@swt-a then,
L 1im ar 3r ds
pe (- ull-2vlssy + 2 5% axj] =T

[

This can be expanded and expressed in terms of & only, for instance

when j = 1
. T-a
L= 11“6 - ! [u1(1-2v)+2u1cosze + 2u,sinscoss] 4vrd§-v
8=-a ( )
: 1 .. 1
=% { ?“1‘“’} 24

The same thing can be shown to apply for j = 2 {he 1imit is then



. [
1 AT, .(p,Q)as
p‘zt;l) R P(i() ju,‘ ) ji p,Q)ds(Q)

, (3-28)
“-}uP) jui(Q)Tji(P,Q)dS(Q)

S
where the Cauchy Principal Value of the above integral is taken.
The limi:
Tim [t (@uy;p.0es0
p(x) + P(x) J

= llg ftiujids + llg jtiujids

S-S, Se

The second limit on the right hand side can easily be shown to be

zero, hence

[t;(@uy;tp.01es@)

Jim
p(x) = P(x)
(3-29)

1

= [0y (.00
S

Substituting these limtis, Equations {3-27), (3-28) and (3-29),
yields the boundary constraint equation for the case of smooth
boundary

5%0)+I%mnﬁ0&mﬂm

S
(3-30)

= | t(Quy .00
S

The BIE for the three-dimen: onal case essentially has the same form
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as Equation (3-30) and its derivation may be found in reference [33].
For the case of the non smooth boundaries, the BIE, Equation
(3-30), takes the form [34].
[
S
f
= ti(Q)Uji(P,Q)dS(Q)

4

S

(3-31)

In Equation (3-31) Cij is a matrix of numbers and depends only up-

on local gecmetry of the boundary at P(5). In practice, c,. is most

ij
expediently calculated by noting that an arbitrary rigid body trans-
lation of R is a sol of Equation (3-31) [15]. If the body
force, b;, is considered, Equation (3-31) takes the form [23].

¢4 (Pluy(P) + f u; (Q)7T;(P,Q)as(Q)

S (3-32)
= [ t@u e + [ byaiye.aaa)
S R

Equation (3-31) can be viewed as the constraint equation re-
lating surface tractions to surface displacements. In physical
problems the tractions and displacements are not known concurrently
over the entire surface. Thus the mechanism of solution is to regard
Equation (3-31) as a set of coupled integral equations of varying
types according as data appropriate to the traction, displacement or
mixed boundary value problems are prescrited.

Exact solutions to Equation (3-31) are, in general, not obtain-
able and Equation (3-31) must be solved numerically for the unkrown

boundary data. Once this is done, the solution for displacement or
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stress at any interior point p(§) of R may be obtained, in terms of
the surface pair u%, ti’ by comparatively simpie quadrature using
Equations (3-23) and (3-24) respectively.

A closing discussion of this section is the treatment of
Equation (3-32) where body force is included. The presence of body
- force bi(q) in this equation removes the problem from 'boundary only'
category, assuming that the volume integral cannot be analytically
performed. However, it has been shown in Reference [35] that it is
possible to convert this volume intearal to a surface integral when the
body force, real or thermal equivalent, is derivable from a scalar
potential whose Laplacian is at most a constant. Now if there exists
a scalar y such that

b. = -9 i with w,ii =k

; , (k0 = constant)

]
The volume integral in Equation (3-32) is convertible to an S

integral and the BIE for this case may be written as [23]

S Uy4(P,Q) Jes(Q)
(3-33)

- 1y [1ot0) Sk (2,0 - i v@r 7 e
S
+ k n, (Q)r(?,Q)1ds (Q)
where u = (1-2v)/16mu(1-v)
Equation (3-33) is now amenable to a systematic 'boundary only'

numerical treatment.



3.3 Formulation of the Numerical Solution Technique for
Plane Problems

As stated in the previous section, analytical solution to the
BIE, Equation (3-31), are not generally available. A general scher
for obtaining numerical solutions for the case of plane elasticity
is discussed in this section. This scheme is to replace the
continuous definition of the boundary data in Equation (3-31) by
some discrete variation that will reduce it to a set of linear
algebraic equations. The boundary is approximated by a set of bound-
ary segments over which uj, tj vary in some specific manner.

The approach followed here is the use of isoparametric shape
functions for the representation of both geometry and boundary data
[36]. The basis of the isoparametric method is the mapping of a
planar curve to a standard interval by means of a fixed set of shape
functions. The boundary is discretized into a total number M cf
boundary segments; each is defined by n nodes. The cartesian co-
ordinates x? of each node are specified, and the cartesian

co-ordinates of a non-nodal point of a segment are assumed to be

given by* (cf. Reference 36).

n
xj(g) = = N¥e) x§

a=1

(3-34)

in which N%(g) are the shape functions of intrinsic coordinate

£(-1 < £ ¢ 1) of the boundary element.

* Generally for the isoparametric representation of geometry not
higher than quadratic shape function are used [36].
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Boundary data can be modeled using a similar {soparametric
representation as used for the geome-ry, Equation (3-34). The dis-

placement vector of a point Q(x) on segment (o) is given by.

vl oy y (3-15)
u,(Q) - e

g

where @s ...................
N (N end(e) ...

- s -

and u_ is a vector contains the displacements of the nodal points of
the segment; namely

T.,123 123
u, = {ululu1 veee Uglols seg.s
with similar expression for tl(Q)
tZ(Q)

[¢]
Writing Equation (3-31) for a nodal point Pn (see Figure 3-3)

M
(Pu(P) + 1 [ u(QT(P 0)es(0)

C.
Ji n n G=1 J
o
(3-36)
M .
. 1 RACTMER I
S

g
where the integrals of Equation (3-31) are now divided into the sum

of M integrals along the surfaces So of the boundary segments.
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r(P,aQ) S

P
n

Figure 3-3. Integration Along Boundary Segment (o)

Based on the discretizirg assumptigns, the parametric
functional representations for ui(Q) and ti(Q), Equation (3-34) are

substituted intc Equation (3-36) to obtain for a particular nodal
point Pn

N (o) a -Vdr
A el R MCRC O G
S (3-37)
-t g, (oe) Ju P QUENN(2) 3 (2)de
a1 ool | 5 31

where ui(°’“) and ti(°’“) are the displacements and tractions at
local node o on the L.undary segment o. Summation is implied on the

repeated indices i and j. The range of the indices i and j is now

{1,2}. J(g) 1s the Jacobian Qéégl which more explicity is



2 2y 172
dx dx
j9(e) = EL9 - (:E}) + (75%} (3-38)

Writing Equation (3-37) for every node and performing the inte-
grations over each segment on S, including that segment which
contains Pn itself, a system of 2N algebraic equations will result
where N is the total number of nodes.

Introducing the short notation

[Ty 1y = [ Ty (P 0tEIN R

3 (3-39)

Laty; 300 = | Ujq(PQ(eNIN(2)a(e)de

SO

Equation (3-37) can be written in the following form
M n M n
L (esa)r,r 10 (esadp,y 10
€44 Y 351 051 u; [ATJ1] = 021 :51 t; [AUJ1]
(n=1,200...... N) (3-40)
The integrals in Equation (3-39) have the meaning that integration

of the kernel function over the segment s for the nodal point n.

Introducing a global numbering for the nodes along the boundary

S, this leads to viewing the system of equations (3-40) in the
following global matrix form
cy+hu=6T (3-41)

or

V—

1y =6 (3-22)

In Equation (3-42), the column matrices U and 1 are of dimension 2N
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and contain the elements U

th 3= L2l N, which are,
respectively, the displacement and traction components at global
node number 3. The square matrices H = ¢ + h and G are 2Nx2N
elements in size and contain the integral coefficients of U and T

as indicated in Equation (:-30). These coefficients are sums of

integrals of kernel-shape function products, and generally evaluated
using Gaussian quadrature formulae. ¢ is a diagonal matrix, which
does not need to be determined explicity.

For the case when n=s , there is no need to evaluate separately
the Cauchy Principal Value of the integral [ATji]:o. Equation (3-40),
and the coefficients cij" of the free term; so the coefficients in
the H matrix can be calculated using the fact that the stress field
corresponding to a rigid body translation is zero. Assuming unit
rigid body translations (in the Xy and X, directions), Equation

(3-42) yields

HI=Q (3-43)

where I is a unit vector. Thus the sum of all the elements of H in
any row ought to be zero, and the value of the coefficient on the
diagonal is simply equal to the sum of all the off-diagonal terms
with sign changed.

The numerical procedure for solving the BIE for plane elasti-
city problems discussed thus far will now be applied to the case of
assuming linear variation of the boundary functions. The linear
boundary element scheme is simple and direct and offers a greater

flexibility in solving general problems in solid mechanics. It is



quite adequate for practical appiications when the B3IE method
is used in conjunction with the experimental techniques for measuring
in.plane displacement components. For these applications the region
of interest is enclosed by a closed contour on which the displace-
ment components at the nodal points are measured experimentally.
Normally the region of interest is relatively a small area and,
therefore, its contour may be approximated by a sequence of short
straight line segments. A computer program based on the linear
functional variations along the boundary was used for the BIE calcu-
lations for the example problems conducted in this dissertation.
Good degree of accuracy has been achieved from using this procedure
as will be shown in Chapter V.

For linear elements (Figures 3-4), the variation of the
functions ui(Q).and ti(Q) between nodes is assumed to be linear.
The nodes are considered to be at the intersection between two
straight line elements and marked as extreme nodes. There are two
shape functions = e = - %-(i-l)

2

and N

N2(g) 8% g+l)

1
and the Jacobian is simply J(g) = 1§3 where 1_is the element length.
/ Node

2

g=+1

’

Figure 3-4. Linear 8oundary Element



The assembled equation for node n, Equation (3-37), m.y be

written in a matrix form for the case at hand as

n.n ch Y a .
e+ laygd tygh = [B0) it)

e (3-44)
(0 = 1,2........ )
In Equation (3-44) L3 is a (2x4) submatrix defined by

B 1 : : 1 ' " ZT b

1 L"HNEE[N%H“E J"Hf‘i]" 1%

- ] [ ] )

a3, = F §e..1 -2 —— 59--1 ...... 2

[ N TZldg E j N T21d5 E f N Tzzds E [ N Tzzde
| So i So ' Sa } So d

with a similar definition for gnc. The elements of the submatrix

a ., are integrals alcng the element ¢ corresponding to node n.
Note that N and N°

%f—s the Jacobian J(g) and 10 is the length of segment.

are functions of £ and Tij s Tij(Pn,Q(s));

It is more convenient to rewrite Equation (3-44) ~ terms of the

nodal displacement and traction vectors in the following forms

¢t + ATy =[8 ]t
- - ~-np = -np - (3-45)

where N is the total number of nodes = the total number of segments,

and the vector u” is the displacement vector at node (p); namely
P
u u
W= 1 z 1
) Y2 uf
node 2

with a similar definitien for t°. The coefficient éno in Equation

(2-45) is now a (2x2) submatrix given by



=~ ' = = '
1 : 1 [ 42 ' 2 u
J N Tlldg E [ N leda | N Tllda. f N ledg
A =defSo . ._iSe ... s 122113021 . v ezl L.
2 T 2 2. 1 [ .2
I N T21dg: I N Tzzdg J N T21d€: I N Tzzds
| So i Sp _  Se-1 ! So-1 _

which contains integral over the two adjacent segments meeting at
node p. When p=1, N is used instead of (p-1) in the above express-
ion.

At any node there will be a single unique vector for the nodal
displacement; the same thing is not always true for the traction
vector at the common nodal point. To properly account for discon-
tinuities of nodal tractions a zero-length segment is to be
introduced at that nodal point. Riccardella [37] has shown for the
case of linear functional variations that zero-length sagments can be
added at any point where a step change in boundary conditions occurs,
and ze* « values can be assigned to the integrals associated with
these zero-length segments.

Writing Equation (3-45) for every node, a system of algebraic

equations will result,

L A £y = P -
ey r+ (AT Whr =[BT (%) (3-46)
or
£y 2 o .
(4,0 wr =108 1" (3-47)
where
A=A when n # o
W ‘np n (3'48)
Bo = pp ¥ & Whenn=o
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The integrals for [gnp] and [§n°] may be evaluated in closed form.
Again there is no need to calculate separately the diagonal coef-
ficients of the matrix [gnp] as discussed earlier in this section.
Assuming a unit rigid body translation in both X and X, direction,
i.e., {u"} = I, the correspending boundary traction is {t°} = 0,
then from Equation (3-47) the value of the diagonal coefficients is
. .
An = - pil 40 (3-49)
pn

Any well-posed boundary value problem will have 2N knowns and
2N unknowns. Once the knowns of the boundary data have been
specified,'the system of equations, Equation (3-42), can be re-
ordered in such a way that all the unknowns are on the left side, i.e.,

k=Y : . (3-50)
The vector X will contain 2N unknown nodal values of traction or
displacement. The vector Y contains the product of the calculated
integrals and the corresponding kncwn boundary data. The system of
equations (3-50) is to be formed directly, and thus the storage of
matrices H and G has been avoided. Only the matrix of coefficients
of the unknowns at the nodes need be formed and stored in a square
array (matrix K). The elements of the other matrix of coefficients
to be multiplied by known quantities may be immediately multiplied
by such quantities as they are generated and stored in a column
vector and not as a separate square array.

The order of magnitude of the terms in matrix H is approximately

(1) times that of the terms in matrix G (where u is the shear modulus).



Thus during the formation of matrix K, the coefficients of the un-
known nodal tractions have been scaled using the shear modulus to
maintain the same order of magnitude for tne unknowns. The system
of Equations (3-50) is numerically stable and is now directly solv-
able by standard reduction scheme (Gaussian elimination).

while one of the major potential numerical advantages of in-
tegral equation methods is reduced problem dimension by solving
boundary equations, another major feature is the internal solution
capability. Once the system of Equations (3-50) is solved, the now
completely known discretized boundary data may be used to evaluate
the displacements and stress tensor at any interior point p(§) by

direct integration of the identities (3-23) and (3-24) with the

boundary-integrals discretized in the same manner as Equation (3-37):

M n (0 a) r a
us(p) = Tzt Us(p.Q(e) N (e)d(e)dz
0zl a=1 SJ
¢ (3-51)
M n ( ) r )
- ¢ ¢ y,92 T.:(p,Q(g)IN®(e)J(z2)de
o=l a=1 I3
Se
and
Moon (0,2} ( a
955y = T T 7T 1Dy (paQ(e)INeals)de
321 a=l ;K
Se (3-52)
Mon (o,a) [ a
- Irout S5 :(PQ(&)INT(£)J(5)de
N =1 azl Sé J

where summation is impiied on repeated i or k indices. Again the
indicated integrations may be evaluated numericaily (using Gaussian

(p) are found for any interior

quadrature formula) and uj(p) and %45
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point. 8y keeping the discretization on the boundary very high
numerical resolution may be obtained, from Equations (3-51) and
(3-52), a feature quite unlike finite difference and finite element
analyses. When high resoiution is required or only a limited
numher-of internal point solutions are desired the integral egquation
method is significanity faster than finite element solutions.

It should be mentioned here that the calculated values of the
stress tensor at interior peints very near to the boundary are not
very accurate, since the boundary is defined cnly by the coordinates
of the nodes, and traction and displacement data are aviilable only
at the nodes. It has been found that an interior point can Le with-
in a distance equal to the length of the nearest boundary segment
and still maintain ordinary accuracy, i.e., accuracy comparable to
that available for the other interior points at distance from the
boundary more than the length of nearest segment.

Not being able to take p(x) arbitrarily close to the boundary is
not a limitation, however, since stresses right on the boundary may
be obtained with no refererce to the interior field. The boundary
stress field may be obtained directly from knowledge of both

tractions and boundary displacements. Since at this stage u; on S
du,
is known at the nodes such that TE} can be cbtained numerically
P

(and sometimes experimentally). Noting further that
du

= s - ,-
1 T L% T YL2M T UM (3-53)

where § is the unit tangent to S at P, and the tangential derivative
du,
'EéL is assumed keeping the material on the left while moving in a
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direction of positive S. Equation (3-53) together with Hooke's law,
Equation (3-2), and the boundary traction t, = 9 4Ny on S consti-
tute sufficient information to determine the state of stress, %5
at each node. The above relation can be casted in the following

matrix form [18]

By =M (3-54)
in which
() P
‘11 0
922 4
%12 )
3=¢ Y119 angM= ¢ 9 %
= - 1,s
Y2,1 0
u
“1,2 N
u
2.2 ),

The square matrix B contains the elastic constants and the components

of n, and qy- After obtaining numerically (or sometimes experimen-

tally) the components Uj ¢ and Uy ¢ at a given node point P, the
* ’
system of Equations (3-54) becomes ready for convenient computation.

The derivatives Uy o plus ti at P complete the column M such that

the stress components °ij on S are obtained as the solution of

Equation (3-54) for each node. Along with the stresses, the dis-

placement gradients u, j

not normally of interest.

are also obtained, although the later are

The BIE solution method can easily be used to study problems
with more than one surface, such as the case of a body with holes

illustrated in Figure 3-5. In order to define an external or



=4

@ D

Figure 3-5.

Multiply Connected Body
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internal boundary, direction of the normal needs to be identified.
This can be done for two dimensional problems by defining a number-
ing scheme as the boundary is traversed in the counterclockwise
direction keeping the body material to the left.

Finally, a basic conceptual advantage of the BIE method is
that it applies to three dimensions as well as two with similarly
defined integral equations arising in each case [13]. The proce-
dure for three dimensiona: problems is similar, except the number
of equations and unknowns is now larger, and evaluation of the
coefficients involves surface integrals over the surface segments

rather than 1ine integrals over line segments.
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IV. THE EXPERIMENTAL PROGRAM
AND DATA ACQUISITION

4.1 Experimental Equipment

The experimental arrangement for making a double exposure
specklegram is shown in Figure 4-1, It is, in fact, a simple
camera configurétion. Monochromatic and coherent laser light is
used to illuminate the specimen which provides for a speckie
appearance on a diffuse surface. Light reflected from ine object is
imaged onto high resolution photographic film. Thin emulsion holo-
graphic films such as Agfa-Gevaert holotest 10ES56 are commonly used.
For the point-by-point data analysis, a set up similar to the one
shown in Figure 2-6 may be used. A helium-neon laser with one to
fifteen milli-watts of output will provide adequate illumination.

To obtain good resolution of changes in displacement with respect to
focation, a small diameter input beam is preferred. The diffraction
halo with fringes is observed on a screen. The procedure for deter-
ming the in.plane displacement components at a point was discussed
in Section 2.3 of Chapter II.

A computer aided data reduction system was developed primarily
for application in speckle interferometry data analysis [5]. This
system can be used as a mean for the displacement data acquisition
for the example problems discussed in this dissertation. The basic

idea of the operation of this system is discussed in the next section.
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4.2 Computer-Aided Data Reduction System

The basic system consists of two par* which are an optical
recording system and the computer ha.dware used in the numerical
analysis as shown in Figure 4-2.

A typical fringe pattern used for analysis is shown in Figure
4.3. This type of fringe pattern is produced when a laser beam is
passed through a photographic transparence as discussed earlier.
Interference fringes are a measure of surface deformation of a body.
Be~ause only a small area is illuminated by the laser, the infor-
mation in the data analysis yields the displacement at a pcint.
Therefore, to obtain a complete map of the surface, each point on
the film will have to be illuminated. This is accomplished by an
x-y translation stage in which the transparency has been mounted.
The stage has the capacity to translate 6 inches in each directioa in
0.001 inch increments with a .0001 inch ;epositioning accuracy.
Synchronous stepping motors provide %“e control for the translaticn
directions. A photographic plate is mounted in the window of the
translation stage and’ a He-Ne laser beam passes through a point on
the film and the film is translated relative td the ststionary laser
beam.

Location of a point in the window is controlled by the stepping
motors which are in turn controlled by the computer. Thus, the
computer can contro! the *ranslation distance with a winimum inter-
val of 0.001 inch.

“t that is passed through the film then fcrms a diffraction
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Figure 4-3. Typical Speckle Photography Fringe
Pattern Used in the (ptical Data
Analysis System
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pattern which is imaged by a vidicon camera. The image on the
camera can then be viewed on a TV monitor or stored in memory in
the computer.

A PDP 11/40 minicomputer is used to control the motion of the
translation table and process the videc signal. Operation of the
System tegins with a command from the computer to move the table to
a specified coordinate position in the table window. With the table
in a specified position, the computer sends a command through the
video interface to store the vidicon imager in the scan conversion
memory. A ccrmand from the computer tFen converts the information
stored in the scan conversion memory into digital fcrm. The
complete image is not processed but only s2lected lines of video
information are processed because of the requirements in the data
analysis. This process completes the data acquisition at a point on
the fiim and the computer then locates a new coordinate position and
the process is repeated.

Data analysis consists of determining the locus of points of
minimum intensity which is referred to as fringe. However, this
analysis is complicated by the fact that the film transparency is
illuminated by a coherent lighc source which produces laser speckle.
The presence of this speckle is to superimpose a noise-iike signal
on the spatial information which degrades the image. A speckle
averaging technique is used which reduces the effect of noise in
locating points of minimum intensity. Fringe separation is deter-

mined by first locating the pcint of maximum intensity from the
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scan average. Then the first minimum point is located to r.ch side
of this maximum and the difference in location determines the fringe
spacing.

Several examples will now be considered and values of the
measured displacements will be presented. The measured values of
displacements are used as data input to numerically calculate
stresses and displaceiments through the BIE method as will be dis-
cussed later in Chapter V.

4.3 txample 1 - Flexure of a Cantilever Beam With a Transverse
tnd Load

A beam with the end x = 5.0 inches fixed and the end x = O has
an end load Ny directed along the negative y-axis was considered and
shown in Figure 3-4. Material for the beam was 1/4 inch plexigias
with E = 4.56x105 psi and v = 0.37. Fixed end conditions for the
beam were cbtaired by bonding one end of the plexiglas beam to an
aluminum block. The transverse end load was governed by the
deflection of the free end (because of the constraints on the pcint-
wise filtering of the experimental data). The end load was applied
with a micrometer screw and the deflection was racorded with a dial
indicator. Free end deflection was & = 0.005 inches which corre-
sponds to an end load wy = 1.14 1b.

Displacements along the free end were measured experimentally,
using the laser speckle technique, and compared with the theoretical
values predicted by the stress function solution. The comparison
as depicted in Figures 4-5 and 4-6 shows a favorable agreement.

Also experimenta’ and theoretical values of the dispiacement aleng
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the neutral axis of the beam were in a very good agreement as shown
previously in Figure 2-8. These favorabie comparisons between
experiments and theory, at the free end and along the neutral axis
of the beam, encourage the use of such experimental technique for
measuring the in.plane displacement components along any specified
contour.

For the region of interest shown in Figure 4-4, displacement
components were measured along the fixed end (x = 5.0 inches) which
are zero and along the section x = 3.0 inches. Data analysis for
this line yielded the experimental values of displacement
components shown in Table 4-1. This completes the displacement
data needed for the BIE solution for this region.

Also the displacement components at some chosen points inside
the region of interest along the x-axis were measured and shown
in Table 4-2. These values will be used later for the comparison
with the BIE calculations as will be discussed in the next chapter.
It shculd be mentioned here that for points at distances greater
than 3.6 inches from the free end fringes could ndt be observed

because of the smallness of the displacements at these points.



TABLE 4-1. EXPERIMENTAL VALUES OF THE DISPLACEMENT
COMPONENTS ALONG SECTION x = 3.0 INCHES
FOR THE CANTILEVER BEAM EXAMPLE

TABLE 4-2.

y uxlO4 vx104
(inches }(inches) | (inches)
-0.5 | -4.633 -10.916
-9.4 -3.531 -10.868
-0.3 | -2.715 -10.890
-0.2 | -1.666 -10.522
-0.1 | -0.913 -10.435
0.0 0.000 -10.475
0.1 1.095 -10.418
0.2 1.788 -10.688
0.3 2.437 -10.559
0.4 3.500 -11.100
0.5 4.633 -10.916

MEASURED DISPLACEMENTS ALONG THE X-AX!IS
FOR THE CAMTILEVER BEAM EXAMPLE

X u vx104
{inches) (inches)
3.2 | 0.0 -8.469
3.4 0.0 { -6.686
3.6 0.0 | -5.326
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4.4 Example 2 - Circular Disk Under Diametral Compression

For this second example problem a circular disk of 3 inches
diameter made of 1/4 inch plexiglas was loaded in compression by
two diametrically opposing nearly concentrated forces located on
the top and bottom of the disk as shown in Figure 4-7. Displacement
components at the nodal points along the contour of the region of
interest, shown in Figure 4-7, were measured experimentally. The
vertical components of the displacement along the horizontal dia-.
meter were constant. A zero value was assigned to these components
because of the symmetry of the problem about the horizontal diameter.
The horizontal components of the displacement along the vertical
diameter were measured and are zero. Data analysié for line y=d/4
yielded the experimental values of displacement components along
that line which are plotted in dimensionless form in Figure 4-8.
The horizontal displacement component at node 11 and the vertical
displacement component at node 26 were measured to be Uy ®
19.7x10"° and Vog = -36.9x10™° inches respectively. Data input for
the BIE solution on prescribed nodes along line y=d/4 were taken

from the best curve fit of the experimental data shown in Figure 4-8.

Both the horizontal displacement components along the horizontal
diameter and the vertical displacement components a1ong the
vertical diameter were also measured and will be compared with the

BIE calculations as will be shown later in Chapter V.



67

REGION OF

INTEREST

' .
//////éNode
1

Figure 4-7. Diametrically Loaded Circular Disk



3—0

~

=

=

[~

:
-

& ®  Experimental
= Points

7 ——— Best Curve
9 Fit

=

Q
2 g ! ! I | | | ] |1
2 6 25 24 23 22 21 20 19 18 17  Node
[~

Figure 4-8a. Horizontal Displacement Components
Along Line y = d/4

e 1.0

~N

| 0.8
0.6 Q@ Experimental
Points

0.4 =

0.2 p

0 l i 1 l | [ [

©

e Best Curve

Fit

Dimensionless Displacement (v/v

Figure 4-8b. Vertical Displacement Components

Along Line y = d/4

26 25 24 23 22 21 20 19

18 17 Node

68



69

4.5 Example 3 - A Plate with a Central Circular Hole
Suﬁjggteg Lo nifoym A;jg! Ign;ign

The geometry of the 0.228 inch thickness plexiglas plate used
to study this classic stress concentration probiem is shown in Figure
* ", The ratio of hole diameter to plate width i§ 1/9. A load P of
Jagnitude 140 pounds was applied in the y direction through 13
equally spaced small holes to assure uniform tension at sections of
the plate far from the lcading ends.

The region of interest selected for the stress analysis using
the BIE method is the portion of the plate within a concentric
circle of a aiameter four times the hole diameter. Due to symmetry
of the problem, onlv one quadrant of this region is considered.
Displacement components at 19 points, of equal angular intervals,
along the circular contour of the region of interest (nodes 11-29)
were measured experimentally., Table 4-3 is a display of these
measured values i1 dimensionless form. Again, a zero value was
assigned to the measured constant value of the vertical displacement
components along the x-axis, which is used as a reference for

measurement of the vertical displacement components.
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TABLE 4-3. MEASURED DISPLACEMENTS ALONG
THE CIRCULAR CONTOQUR OF THE
REGION OF INTEREST FOR EXAMPLE 3

Node u/u11 v/v29
11 1.000 0.000
12 0.992 0.075
13 0.975 2.150
14 C.341 0.224
15 0.899 0.299
16 0.846 0.373
17 0.737 0.446
18 0.719 0.518
19 0.652 0.589
20 0.579 0.656
21 0.506 C.720
22 0.433 0.781
23 0.362 0.834
24 0.298 0.882
25 0.233 0.924
rd 0.171 0.956
27 0.112 0.980
28 0.056 0.994
29 0.000 1.000

Measured values of up * -14.2x10'5 inches

and

Vog ® 35.7x10™° inches
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V. RESULTS AND DISCUSSION

5.1 The Coupling of the BIE and Laser Speckle Techniques

Experimental displacement measurements coupled with the BIE method
represent a useful solution procedure which extends the capabilities
of coherent optics measurements in calculation of stresses or
strains in engineering problems. Data analysis in speckle inter-
ferometry yields a map of surface displacements along the contour
of a region of interest. These experimental values are used as
data input to numerically calculate, with a high degree of
resaiution, strains and stresses at any desired location inside
the region of interest through the BIE method.

In order to demonstrate the coupling of the two solution
techniques as applies to linear elasticity problems, several examples
are presented in the following sections. The numerical results are
obtained through the use of a BIE computer program based on linear
functional variations along the boundary segments. Displacement
data input to the computer program are the experimental values of
the example problems discussed previously in Chapter IV.

5.2 The Cancilever Beam Problem

The cantiiever b2am problem was analyzed using the BIE model
for ““e region of interest shown in Figure 5-1. Sixty straight
line segments of equal length were used. Nodal points 1-21 are
specified to be traction free, noints 21-31 were measured dis-
placements which are zero. Points 31-51 are traction free and

points 51-1 are measured displacements uti’“zing the laser speckle



51 31

H——

REGION OF

—y——— - - - - - -

INTEREST

Nodes

- \\_-

>

Figure 5-1. BIE Model for the Region of Interest
of the Cantilever Beam Problem

&L



74

technique of pointwise filtering. These measured values were
listed previusly in Table 4-1. Egpecial ettenticn was giver in
the numerical procedure to the tracticn discontinuities at the
corner points as discussed previously in Chapter III.

Table 5-1 is a display of the calculated BIE results for the
stress components at sections x=3.0 and 5.0 inches. The results at
section x=3 inches were compared ta the stress function solution
and to the bending moment for a load uy = 1.14 1bf. Integration of
the stress components over this section yielded a bending moment
deviation of -0.58%. The same resuits were compared at the fixed
end (x=5 inches). At this section the bending moment and shear
force dev* { from the static values by 6.49% and 7 6% respectively.
As antici, ., the stress distribution at the fixed end section
is different t -m the stress function solution. Since exact
boundary conditions were specified for the BIE solution, it is
logical to theorize that the results obtained from the combined
laser speckle displacement measurements and 8IE solution for this
problem are more reliable than the stress function solution.

Internal displacements at three points along the neutral axis
of the beam were also computed and compared to the measured values.
‘The comparison is shown in Table 5-2.

The results of the combined laser speckle displacement measure-
ments and BIE solution procedure compared favorably with the
thecreticai and the experimental results and static equivalent

check. These results are particularly good in view of the small



TABLE 5-1,

RESULTS OF THE BIE CALCULATIONS

FOR THE CANTILEVER BEAM PROBLEM

o, (psi) a, (psi) Ty (psi)
y at x=3.0 inches at x=5.0 inches . at
(inches) | BIE Theoretical. BIE | Theoretical | x = 5.0 in,
0.45 76.04 73.87 127.03 123.12 14.61
0.35 57.75 57.46 83.31 85.76 15.15
0.25 41.34 41.04 57.80 68.40 -0.39
0.15 24.60 24.62 34.48 41.04 -3.27
0.05 8.09 8.21 11.44 13.68 -5.04
-0.05 -8.09 -8.21 -11.44 -13.68 -5.04
-0.15 -24.60 -24.62 -34.48 -41.01 -3.27
-0.25 -41.34 -41.04 -57.80 -68.40 -0.39
-0.35 -57.75 -57.46 -83.31 -85.76 15.15
-0.45 ~76.04 -73.87 -127.03 -123.12 14.61
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applied transverse load W,

Table 5-2. COMPARISON BETWEEN CALCULATED
AND MEASURED VALUES OF THE
BEAM DEFLECTION ALONG THE X-AXIS

v X 104 {inches)

(inzhes) [ BIE | Measured
3.2 -8.57 -8.47
3.4 -6.89 -6.69
3.6 -5.37 -5.3:

The ability to partition a2 section of a geometry has an
additional advantage in experimental data displacement measure-
ments. For e:ample, in this sample problem, the free end load was
governed by the displacement measurements of the free end. The
ability to partition the geometry will allow displacements within

—regions to exceed the measurable data if only information is

obtained in regions'of high stress gradients.



5.3 The Circular Disk Problem

This problem was studied using the BIE model illustrated in
Figyure 5-2. The boundary of the region of interest is represented
by thirty straight line segments. DOue to the symmetric nature of
the problem, boundary conditions for nodal points 1-11 are
specified as zero traction in the x-direction and zero displace-
ment in the y-direction. Furthermore, nodal points 26-1 are
specified as traction free in the y-direction and zero displace-
ment in the x-direction. Points 11-17 are traction free and points
17-26 are specified displacements. OQOisplacement input data for
the BiE solution were cbtained from the best curve fit of the
experimental data previously shown in Figure 4-8.

The numerical results for the normalized stress distribution
along the horizontal diameter of the disk were compared to the
theoretical results of Reference (38]. The compariscn is very
good as depicted in Table 5-3. Also, the results of the calculated
displacements along the horizontal and vertical diameters compare
favorably with the experimental results as shown in Figures 5-3

and 5-4 respectively.

17
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TABLE 5-3. COMPARISON OF THE BIE CALCULATIONS AND
THEORETICAL SOLUTION ALONG THE HORIZONTAL
DIAMETER FOR THE CIRCULAR DISK PRCBLEM

Dimensionless Dirensionless Stress o
Dis:ance P7d

da/2 BIE Theoretical
0.0 -1.941 -1.911
0.1 -1.890 -1.860
0.2 -1.743 -1.719
0.3 -1.524 -1.506
0.4 -1.266 -1.257
0.5 -0.996 -0.993
0.6 -0.738 -0.740
0.7 -0.501 -0.510
0.8 -0.299 -0.309
0.9 -0.126 -0.141
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5.4 The Stress Concentration Problem

The example problem of the plate with a circular hole under
uniform tension was selected to demonstrate the application of the
coupled technique of laser speckle interferometry and BIE to solve
a typical stress concentration problem.

Figure 5-5 illustrates the BIE idealization for the symmetric
portion of the region of interest used for the stress analysis of
the problem. Twenty-seven straight line segments with twenty-nine
nodes were used. Nodes 1-10, along the hole surface, are specified
to be traction free. Displacement components of nodes 11-29 are
measured values as listed previously in Table 4-3.

Internal stresses were computed at a series of points along
the x-axis. The numerical results, normalized by the resultant
applied load divided by the net cross-sectional area, were ccmpared

to the available closed form solution for a similar problem of an

infinite plate [3°1 as shown in Table 5-4. It is of most interest
to notice that the stress values predicted by the numerical
solution are larger than the corresponding values predicted by the
closed form solution. However, this §s expected since the

numerical results are for a plate with finite width. The boundary

stress at node 10 was also calculated and the computed elastic stress

concentration factor, maximum calculated stress divided by the
nominal stress, InoM» Was 2.66 as compared to 2.67 given in

Reference [39] for the plate with finite width.
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TABLE 5-4. COMPARISON OF THE BIE CALCULATIONS AND
THEORETICAL SCLJTION ALONG ThE X-AXIS
FOR THE STRESS CONCENTRATION PROBLEM

Dimensionless |[Stress Concentration ¢ /o
Distance y'"NOM
x=R ,
R BIE Theoretical
i
[ 0.02 2.63 2.55
(.03 2.55 2.49
0.04 2.49 2.44
0.G5 2.43 2.39
0.08 2.22 2.25
, 0.10 2.20 2.17
0.20 1.87 1.84 \
0.40 1.43 1.46 !
0.60 1.29 1.27
0.80 1.17 1.15
e 1.00 1.10 1.08
1.50 1.01 0.99

R is the radius of the hole
Nominal Stress oM = 204.8 psi



VI. CONCLUSIONS

The general theory for laser speckle shearing intarferometry
which includes both the contributions of in.plane and out of plane
deformations was developed. Laser speckle interferometry provides
-a te. ‘que to directly measure in-plane displacement components
without the need for vibration isolation. This experimental technique
was couq]ed with a numerical boundary-integral solution *echnique
to ca.culate stresses and strains at any point for a deformed
solid utilizing the measured boundary displacement data.

The analytical formulation of the boundary-integral equation
method for two and three dimensional elasticity was reviewed in
detail. The linear boundary element scheme used in the numerical
formulation for plane problems is simple and offers a great
flexibility and ease in solving many important solid mechanics
problems.

The numerical results of the sample problems presented
illustrate the successful coupling of laser speckle interferometry
and boundary-integral equation techniques as applied to elasticity
problems. High accuracy was attainabie by using a relatively
coarse level of boundary discretization. The ability to partition
a section of a geometry has an additional advantage in experimental
displacement measurements. It may allow displacements within
regions rather than the particular region of interest to exceed the
measurable data. The coupling of laser speckle interferometry and

the numerical boundary-integral technique becomes more compatible



when the displacement data can be stored in the computer directly
without the need of time comsoming data amalysis. The coupled
technique may be applied to axially symmetric and fracture mechanics
problems. In particular, fracture mechanics applications appear

to be a well posed problem using this coupled technique. A ¢losed
contour surrounding the crack will form the measured boundary
displacements and the boundary-integral solution techmnique used to
calculate internal values. Thus the fracture mechanics problems

form the basis for future research work.
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